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Abstract
The methods behind the predefined impulse response function in continuous time (PIRFICT) time series

model are extended to cover more complex situations where multiple stresses influence ground water head fluctu-
ations simultaneously. In comparison to autoregressive moving average (ARMA) time series models, the PIRFICT
model is optimized for use on hydrologic problems. The objective of the paper is twofold. First, an approach is
presented for handling multiple stresses in the model. Each stress has a specific parametric impulse response func-
tion. Appropriate impulse response functions for other stresses than precipitation are derived from analytical solu-
tions of elementary hydrogeological problems. Furthermore, different stresses do not need to be connected in
parallel in the model, as is the standard procedure in ARMA models. Second, general procedures are presented
for modeling and interpretation of the results. The multiple-input PIRFICT model is applied to two real cases. In
the first one, it is shown that this model can effectively decompose series of ground water head fluctuations into
partial series, each representing the influence of an individual stress. The second application handles multiple
observation wells. It is shown that elementary physical knowledge and the spatial coherence in the results of mul-
tiple wells in an area may be used to interpret and check the plausibility of the results. The methods presented can
be used regardless of the hydrogeological setting. They are implemented in a computer package named
Menyanthes (www.menyanthes.nl).

Introduction
Transfer function noise (TFN) models are a conve-

nient tool for modeling the evolution of a wide range of
variables. The general theory of time series analysis (Box
and Jenkins 1970) originally stems from the statistical
sciences. Because of their statistical background, the
so-called autoregressive moving average (ARMA) time
series models can be applied to all sorts of data, as long
as the behavior of the system to be modeled is sufficiently

linear or can be linearized by transforming the data. Time
series models are especially useful for modeling systems
whose behavior cannot, or not easily, be described in
terms of physical laws and properties (e.g., economical
data). In addition, TFN models are often used in hydro-
logy and other sciences because they are relatively easy to
construct and at the same time they can yield very accu-
rate predictions.

When an ARMA type TFN model is applied to
a data set, the so-called model order has to be specified.
The model order includes the number of autoregressive
and moving average parameters in both the deterministic
and stochastic parts of the model and the delay time of
the transfer function. Box and Jenkins devised an iterative
model identification procedure to guide the modeler in
finding the optimal model order. First, an initial model
order is chosen based on statistical criteria like the cross-
correlation function between the explained and explana-
tory variables. Second, the parameters of the model are
estimated by minimizing the variance of the ‘‘innovations’’
or one-step-ahead prediction error using an optimization
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algorithm. Third, the adequacy of the model is checked
diagnostically using statistical criteria like the auto- and
cross-correlation functions of the innovations. If the
model does not yet meet the criteria, the model order is
updated and the procedure is repeated until the modeler
finds the results satisfactory. A disadvantage of this
approach is that the results of the model identification
procedure can be ambiguous (Hipel and McLeod 1994)
and the process itself is rather heuristic and can be knowl-
edge and labor intensive (De Gooijer et al. 1985).

Von Asmuth et al. (2002) presented the principles of
a new type of TFN model that is optimized for use on
hydrologic problems and operates in a continuous time
domain. In this approach, the discrete transfer function
used in ARMA models is replaced by a simple analytical
expression that defines the impulse response function.
The resulting class of models is referred to as predefined
impulse response function in continuous time (PIRFICT).
Von Asmuth et al. (2002) showed that PIRFICT models
overcome a series of limitations of ARMA TFN models,
including the use of irregular or high-frequency data and
the modeling of systems with a long memory. In addition,
application of the PIRFICT model does not require
a Box-Jenkins style model identification procedure. Since
the transfer functions are confined a priori to physically
plausible behavior, there is no need to identify the
‘‘order’’ of the transfer functions on statistical grounds.
Therefore, application of the model is standardized,
which facilitates implementation in a computer package
such as Menyanthes (www.menyanthes.nl). When the
PIRFICT method was introduced (Von Asmuth et al.
2002), we restricted ourselves to the case of a single
input/output series. Here, we will extend the method to
cover more complex, real world situations where multiple
stresses influence head fluctuations at one or multiple
observation wells simultaneously.

Two important aspects of dealing with complex data
sets are addressed in this paper. The first one is the treat-
ment of different types of stresses within the model.
Different stresses require different parametric impulse
response functions. Von Asmuth et al. (2002) used the
Pearson type III function for modeling the effect of pre-
cipitation surplus. Here, we will introduce analytical sol-
utions of elementary hydrogeological schematizations as
guides to develop appropriate impulse response functions
for other stresses. We will also show that from a physical
point of view, different stresses do not always have to be
connected in parallel and get a separate transfer function,
as is the standard procedure in ARMA TFN modeling.
The second aspect deals with the interpretation and
checking of the plausibility of the results. While the time
series literature commonly involves the analysis of indi-
vidual time series, using the PIRFICT approach, one can
analyze and process all available series of heads in an
area in batch. Given that they are part of the same hydro-
logical system, the results of neighboring observation
wells may show a spatial coherence, which yields valu-
able extra information as regards the properties of the sys-
tem and the plausibility of the results. In this paper,
however, all series are still modeled separately and the re-
sulting spatial patterns are analyzed a posteriori. Future

research will include methods to impose spatial coher-
ences a priori in the model.

This paper is organized as follows. First, we discuss
how different types of stresses are dealt within the model.
We illustrate the approach by analyzing a single series
being influenced by precipitation, evaporation, ground
water withdrawal, and river-level fluctuations. Second,
results are presented for a case where data are available
from multiple observation wells. A discussion and con-
clusions are given at the end of the paper.

Methodology

From a Single to a Multiple Input Model
The basic equation of an ARMA model, which is

discrete in time, is equivalent to the following convolu-
tion integral in continuous time (Von Asmuth et al.
2002):

hiðtÞ ¼
Z t

2N

RiðsÞhiðt 2 sÞds ð1Þ

where hi [L] is the predicted head at time t attributable to
stress i. Ri is the value of stress i at time t, and hi is the
transfer or impulse response function of stress i. In
ARMA time series models, multiple stresses are dealt
with by connecting them in parallel and assigning a sepa-
rate transfer function to each. The output series is then
obtained by summing the separate effects of all stresses.
For the case where a number of N stresses influence the
head, the equations of a continuous time TFN model may
be written as follows:

hðtÞ ¼
XN
i¼1

hiðtÞ 1 d 1 nðtÞ ð2Þ

where h is the observed head at time t, d is the local
drainage level relative to some reference level [L], and n
is the residual series [L].

Several main types of stresses can be distinguished.
These types include precipitation (p), evaporation (e),
ground water withdrawal (or injection) (w), surface water
level (s), barometric pressure (b), and (hydrological) inter-
ventions (m). Please note that tidal fluctuations, on whose
effect a large volume of paper is devoted, are included in
the s type. From a physical point of view, a ground water
system is likely to respond to different types of stresses dif-
ferently, but there are also certain stresses that will cause
a very similar response. In the latter case, separate stresses
do not necessarily need separate response functions. For
instance, the effect of evaporation e on the head h is essen-
tially the same as that of precipitation p, but it is negative,
and may be modeled as follows:

heðtÞ ¼
Z t

2N

2 eðsÞfhpðt 2 sÞds ð3Þ

where hp is the response of the system to precipitation
and f is a reduction of e as compared to the reference
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evaporation series. The evaporation factor f is a parameter
that depends on soil and land cover and should not be
confused with the crop factor (e.g., Penman 1948), as the
latter is used for a crop that is optimally supplied with
water, while f also incorporates the average reduction of
the evaporation due to actual soil water shortages. For
sake of simplicity, we consider f to be constant. Although
it may actually be a function of time, the use of an aver-
age reduction factor is in fact already an improvement
upon traditional ARMA modeling practice, where f is
often simply ignored. In the case of the barometric pres-
sure b, which codetermines the loading on a (semi)-
confined aquifer, we propose to use the time derivative in
the convolution:

hbðtÞ ¼ 2

Z t

2N

dbðsÞ
ds

hbðt 2 sÞds ð4Þ

in order to be able to use an impulse response function
hb that behaves similar to the other stresses, as a step
change of b will result in a quick increase of h, followed
by a slow decay whenever the aquifer is not completely
confined.

Interventions are defined as structural changes to
a hydrologic system, like forest clearing, construction of
ditches or drainage systems, and so on. In general, the
nature of an intervention determines the manner in which
it should be modeled. For example, if the intervention
causes a sudden change in actual evaporation on time tm,
such as a forest clearing, it may be modeled as follows:

hmðtÞ ¼
Z t

2N

mðsÞkhpðt 2 sÞds ð5Þ

where m(t) ¼ 0 for t < tm and m(t) ¼ 1 for t > tm, and k is
a parameter representing the change caused by the inter-
vention. Another example is a change in the level of
a floodgate. This intervention itself acts as an indepen-
dent stress on the system, and, in such cases, a new
response function hp should be estimated. It is noted that
it is possible that the hydrogeological properties of the
system are changed significantly by an intervention. In
that case, the response of the system to all stresses is
changed and Equation 1 becomes:

hiðtÞ ¼
Ztm
2N

RiðsÞhi1ðt 2 sÞds 1
Z t

tm 1 �t

RiðsÞhi2ðt 2 sÞds

ð6Þ

where hi1 and hi2 are the response functions before and
after the intervention, respectively. A transition period of
�t, during which the system shifts from one state to
another, should be omitted from the data. The length of
this period depends on the response time of the system.

The Impulse Response Functions for Different
Types of Stresses

Under a wide variety of hydrogeological settings, the
response of an impulse of precipitation surplus may be

simulated accurately with a Pearson type III distribution
function (PIII) (Von Asmuth et al. 2002):

hpðtÞ ¼ A
antn21expð2 atÞ

�ðnÞ ð7Þ

where A, a, and n are parameters that define the shape of
hp. The choice of this impulse response function was
based on physical arguments, and it was shown that the
PIII function was (at least) as effective as an ARMA type
transfer function of optimal order. Although the PIII func-
tion is very flexible, it proves to be less effective for non-
distributed types of stress. For ground water withdrawals
(stress type w) and surface water level fluctuations (type s),
we propose to use response functions inspired on analyti-
cal solutions of simple hydrogeological schematizations.
Notice that the crucial issue in selecting a parametric
impulse response function is whether the range of shapes
it can take is sufficient to approximate the true response
of the system accurately. In this sense, our viewpoint is
that of time series analysis, where the only assumptions
regarding the transfer model are that the system is linear
and that the ‘‘model order’’ is adequate. Here, we assume
that the functions chosen can capture the essential behavior
of the stress type regardless of the exact geohydrological
setting. A systematic comparison of the performance of
different impulse response functions for different types of
stresses, however, falls beyond the scope of this paper and
will be dealt with in an upcoming paper.

For withdrawals (stress type w), we choose the well
formula of Hantush (1956) as a blueprint. The Hantush
formula assumes a fully penetrating well in an aquifer of
infinite extent, with transmissivity T [L] and storage coef-
ficient S [2], covered by a storage-free aquitard with
resistance c [T]. While a standard pumping test yields
a step response function, here we are looking for an
impulse response function, which is the derivative of the
step response function with respect to time:

hwðtÞ ¼ 2
1

4pTt
exp 2

r2S

4Tt
2

t

cS

��
ð8Þ

where r denotes the distance between the observation and
the pumping well. Since we intend to use this formula in
other hydrogeological settings as well, we convert this
equation to the following parametric impulse response
function:

hwðtÞ ¼ 2
c
t
exp 2

a2

b2t
2 b2t

��
ð9Þ

where a, b, and c are just parameters that no longer have
a transparent physical meaning (except for cases where
Hantush assumptions happen to be satisfied). For surface
water fluctuations (stress type s), we choose the so-called
polder function of Bruggeman as a blueprint (Bruggeman
1999). This function represents a sudden unit increase of
the water level at the boundary of a one-dimensional semi-
confined aquifer of semi-infinite extent. The derivative
gives the impulse response function hs, the response to
a very short rise and fall of the surface water level:
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hsðtÞ ¼ 2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pkDt3

x2S

r exp 2
x2S

4kDt
2

t

cS

��
ð10Þ

where x denotes the distance between the surface water
feature and the observation well. We convert the physical
parameters to the abstract parameters a9, b9, and a scaling
factor c9, so that hs becomes:

hsðtÞ ¼ 2
c9ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
b92

a92
t3

s exp 2
a92

b92t
2 b92t

��
ð11Þ

For stress type b (the barometric pressure), we chose the
PIII function, that is, the same impulse response function
as used for precipitation and evaporation, because pressure
is a distributed type of stress, too. The adequacy of a time
series model based on these impulse response functions
may be checked with the aid of the methods described and
illustrated in the coming paragraphs. The practical use-
fulness of these impulse response functions has been de-
monstrated through application to thousands of wells in
Europe, Australia, and North and South America.

Parameter Estimation
The first step in the parameter estimation process is

the evaluation of the model equations using an initial esti-
mate of the parameters, which will result in a time series
of model errors or residual series. When modeling hydro-
logical data, the value of a model residual at a certain
time is often correlated with its value at earlier times, so
residuals cannot simply be modeled as a set of indepen-
dent Gaussian deviates. Here, the model residuals are
modeled with a separate noise model, which is given by:

nðtÞ ¼
Z t

2N

/ðt 2 sÞdWðsÞ ð12Þ

where / is the noise impulse response function and W is
a continuous white noise (Wiener) process [L]. This is
equivalent to an AR(1) model embedded in a Kalman
filter under the pure prediction scenario in discrete time,
when the response function / is exponential (Von Asmuth
and Bierkens 2005). In that case, the one-step-ahead pre-
diction error or innovation series m of the noise model
may be obtained as follows:

mðtÞ ¼ nðtÞ 2 nðt 2 �tÞexpð2a�tÞ ð13Þ

The noise model is important for the parameter estima-
tion process and for dealing with irregularly spaced data,
but also for prediction, forecasting, and stochastic simula-
tion purposes. For further details, we refer to Von Asmuth
and Bierkens (2005), as the parameter estimation process
itself is not influenced by the fact that the transfer model
contains multiple stresses.

General Modeling Procedure
The model identification procedure devised by Box

and Jenkins (1970) is that, first, the model order is

specified, second, the parameters are estimated, and third,
the model results are checked. The adequacy of the model
results may be checked with statistical criteria like the
autocorrelation and cross-correlation functions of the
innovation series m. The autocorrelation function indicates
whether the white noise assumption holds, which is a pre-
requisite of the algorithms used for the estimation of the
model parameters and their covariance; it also indicates
whether the order of the noise model is adequate. The
cross-correlation functions between the innovation series
m and the different input series indicate whether there are
patterns left in the innovation series that could be ex-
plained by the input series. This gives an indication of the
adequacy of the order of the transfer functions but also of
possible nonlinearity in the relationships. If the model
does not meet these so-called diagnostic checks, the
model order is updated. This procedure is repeated until
the optimal model order is identified (Box and Jenkins
1970).

As stated earlier, there is no need for identifying the
order of the transfer model on statistical grounds in the
PIRFICT approach, as the impulse response functions are
chosen on physical grounds and span a whole range of
ARMA model orders (Von Asmuth et al. 2002). In both
cases, however, the modeler also has to identify the
stresses that influence the ground water dynamics, decide
which stresses to use, and check the results. Stresses that
are not incorporated in the model can lead to erroneous
results when their dynamical behavior is correlated with
one or more of the other (already considered) stresses. On
the other hand, the model may have difficulty in uniquely
identifying all influences when there is a high number of
stresses, a lack of pronounced dynamics of the stresses, or
a low quality or scarcity of the data. The diagnostic
checks introduced by Box and Jenkins are devised to
assess whether the TFN model is adequate and optimal in
a statistical sense, which remains important especially for
the noise model, but does not exclude the possibility that
the model results are influenced by noncausal correla-
tions. Here, we propose the use of plausibility checks to
guide the modeler in assessing whether the results of the
transfer model are physically realistic. The resulting mod-
eling procedure is illustrated in Figure 1.

The plausibility checks include the model residuals,
the evaporation factor f, the local drainage base d, and the
moments of the impulse response functions and their
standard deviations. The model residuals, uniting all fac-
tors that are not accounted for by the model, are an
important aid in identifying possible unknown stresses
that may be a source of model distortions. Nonrandom
patterns of the residuals in space or time reveal the fact
that there are still stresses missing in the model. The pat-
terns themselves often give enough information to pin-
point the nature and location of the missing stresses. The
evaporation factor f is important, as the seasonal cycle in
the evaporation is often present in other natural or anthro-
pogenic stresses such as ground water withdrawals for
agricultural or drinking water purposes as well. Regard-
ing the drainage base, an estimate that is too low or too
high may be caused by the influence of stresses that are
not incorporated in the model or that are not well
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quantified. This can easily happen with stresses that do
not show pronounced dynamics, such as more or less con-
stant seepage or withdrawal rates. In addition, the mo-
ments of the impulse response functions of the different
stresses provide relevant information. Moments can be
used to characterize the functioning of the ground water
system and can be related to its geohydrologic properties
(Von Asmuth and Maas 2001; Von Asmuth and Knotters
2004). In contrast to physical parameters that are defined
only in the context of a certain schematization, moments
are related to common statistical terms and are more gen-
erally applicable. The jth moment of an impulse response
function is defined as follows:

Mj ¼
ZN
2N

t jhðtÞdt ð14Þ

where M0 represents the area under the impulse response
function, l ¼ M1/M0 is the mean of the impulse response
function, and r2 ¼ M2/M0 2 l2 is the variance. Matching
of moments is a common technique for solving differen-
tial equations, amongst others in transport modeling (e.g.,
Yu et al. 1999; Luo et al. 2006).

Example Applications

Single Head Series
The functioning and results of a multiple input PIR-

FICT model on a single well located in the northern part
of the province of Limburg (the Netherlands) are pre-
sented in this subsection. The well, with the national
code 46DP0032, has two screens. We consider only the
top one, which is located 13 m below the surface. The
well is located on the edge of the floodplain of the river
Meuse in an aquifer that consists of coarse gravelly sands
overlain by finer sands which originate from river depos-
its. In addition to the river-level fluctuations, the head is

influenced by precipitation and evaporation and by
a pumping station near the town of Bergen where ground
water is withdrawn for drinking water production.

Time series data of all stresses are available. The
precipitation and potential evaporation series originate
from stations of the Royal Dutch Meteorological Insti-
tute in Venray and Eindhoven, respectively. The river
levels were monitored at a dam in Sambeek, downstream
of well 46DP0032; the pumping rates were obtained
from the drinking water company of Limburg. The
parameters of all three impulse response functions are
optimized using the methods described in Von Asmuth and
Bierkens (2005). Here, we will consider the results of the
transfer part of the model and of this individual series
only, after the first run of the model. The model results
and parameter estimates are summarized in Table 1. In
the table, two parameters are given that define the good-
ness of fit: the percentage of variance accounted for
ðR2

adjÞ and the root mean squared error. In the definition of
R2
adj, the residual variance r2nðtÞ is weighed according to

the variance r2hðtÞof the original signal in the following
manner:

R2
adj ¼

r2hðtÞ 2 r2nðtÞ
r2hðtÞ

3 100% ð15Þ

The results of the time series model are shown in
Figure 2, where the measured heads h (dots) and pre-
dicted heads

PN
i¼1 hi 1 d(solid) are plotted together in

the upper graph, while hi is plotted for every stress in the
graphs beneath. Thus, the ground water level series is de-
composed into four partial series, which show the effects
of the individual stresses. For example, it may be observed
that the recent series of wet years in the Netherlands (1999
to 2002) has led to an overall increase in the ground water
levels. Furthermore, the effect of evaporation does not
vary much from year to year but shows a distinct seasonal
pattern as it is mainly influenced by temperature and solar
radiation. The river level has little effect as it is maintained
by dams, except for high-water events when the river
leaves its channel and enters the floodplain. In those cases,
the head responds very quickly and shows distinct peaks.
Finally, heads show a gradual decline since 1994 due to the
ground water withdrawal that started around that time.
Note that these distinct differences in dynamic behavior
allow the time series model to distinguish the effects of the
individual stresses. Also note that the frequency of the
ground water level observations changes around 1992 from
four times a year to once a week. This does not pose
a problem for the model, as the impulse response equations
are continuous in time and predictions are not fixed to
a certain time discretization.

For each of the different stresses, an impulse response
function is estimated (although not always independent
from the other stresses, see Equations 3 through 5). The
impulse response function forms the heart of the time
series model and represents the response of heads to
a unit impulse of the stress. The shape of the impulse
response function depends on the position of the observa-
tion well and the properties of the system. As an example,
the impulse response function of the level of the river

Identification
of Stresses

Parameter
Estimation

Plausibility
Checking

Diagnostic
Checking

Parameter
Estimation

Model
Identification

Figure 1. Proposed procedure for modeling time series of
ground water heads in complex situations. The procedure
for identifying the noise model is that of Box and Jenkins
(1970). When both the plausibility and diagnostic checks are
met, the results can be accepted for further use.
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Meuse is plotted in Figure 3. From the graph, one can
infer that the heads indeed respond quickly to a rise and
fall in river level, as the impulse response function (solid
line) peaks in less than half a day. Apart from its dynamic
response, one is often also interested in the stationary
influence of a certain stress. This is represented by the
step response function (dashed line), which is the integral
of the impulse response function with respect to time; the
step response represents the response of the system to
a sudden and then ongoing rise of the river level. The
level that the step response function approaches toward
infinity is the zeroth moment (M0), also known as the

gain in the time series analysis literature. Using Equation
11, we can obtain M0 for stresses of type s as follows:

M0;s ¼
ZN
0

hsðtÞdt ¼ c9expð22a9Þ ð16Þ

In the case presented, M0,s for the river Meuse is
0.73 m, which means that a river level rise of 1 m will
eventually lead to a ground water level rise of 73 cm on
this location. For as long as the assumption of linearity
holds, the zeroth moment can be used for quick scenario
calculations, as the multiplication of M0,s and a planned

Table 1
Model Results and Parameter Estimates for the Ground Water Head Series Observed in Well 46DP0032

Input series Stress Type Parameter Value r

Venray Precipitation A(M0,p) 299.2 23
b 0.003117 0.00033
n 0.898 0.025

Eindhovenentry Evaporation f 1.16 0.076
P.S. Bergenentry Pumping well a 2.58 2.4

b 0.0522 0.027
c 0.00585 0.03
M0,w 23.633 1025 5.683 1026

SambeekBoven River a9 0.02527 0.094
b9 0.0368 0.13
c9 0.7656 0.057
M0,s 0.7279 0.0939

Note: R2
adj ¼ 92.0%. Root mean squared error ¼ 0.068 m. Drainage base ¼ 11.53 m.
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Figure 2. The ground water head fluctuations in well 46DP0032 (top) decomposed in four partial series due to (from top to
bottom) rainfall, evaporation, river-level fluctuations, and a pumping station. Adding the partial series and the estimated
drainage base d (Table 1) results in the predicted series.
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rise in the river level yields a prediction of the ground
water level rise. Note that the standard deviation of M0,s is
reasonable, whereas the standard deviation of parameter
a9 is large (a similar case is true for M0,w of the ground
water withdrawal). This is caused by the covariance
between the parameters.

Multiple Head Series
We will illustrate the procedure in which the results

from multiple observation wells may be interpreted and
checked in a second application. This application con-
cerns a drinking water production area with multiple
observation wells located in the northwestern part of
Germany, in an area called ‘‘Harlingerland’’ near the
Town of Esens. Ground water is withdrawn by the drink-
ing water company Oldenburgisch-Ostfriesischer Wasser-
verband (OOWV) at a current rate of 9 million m3/year.
The 15 pumping wells are clustered in two rows, which
are more or less placed in series (Figure 4). The well
screens are located at a depth of 25 to 40 m from the soil
surface. The withdrawal rate history (Figure 5) shows
a marked increase in the period from 1972 until 1976.

Such a rate change is very important for a reliable esti-
mate of the influence of a pumping well, as it will have
caused a marked drawdown. Furthermore, the withdrawal
rates show a distinct seasonal cycle caused by factors like
the increased watering of yards in dry periods. The with-
drawal rate is obtained by summing the pumping rates of
the individual wells. Data on the individual wells, which
are controlled separately, are available only since 1992.
Anyway, use of the individual pumping rates is not
straightforward, as the number of 15 wells is too high to
estimate their influence independently. Ground water
dynamics are recorded at 116 observation wells with
a total of 139 screens in a circle with a radius of 5 km
around the pumping wells. The screens depths range from
less than 1 to more than 90 m from the surface. Part of the
wells are monitored every 2 weeks and the other part
monthly. The period in which the wells were monitored
differs from well to well, with the earliest measurements
dating back to 1964, while other wells were installed as
recently as 1999. In some of the wells, monitoring stop-
ped in 1975, while in some others, the period between
1975 and 1998 is missing. The aquifer in the area consists
mainly of sands; in some parts, a clay layer separates the
phreatic from the deeper aquifer.

The head fluctuations are modeled with precipitation,
reference evapotranspiration, and ground water with-
drawals; there are no rivers or other important fluctuating
surface water in the area. Results of the 139 time series
models are summarized in Table 2, where the minimum,
median, and maximum value of the parameters in all 139
models are given, along with their 95% confidence inter-
val. The median value of R2

adj points out that the fit of
most models is good, although there are clearly outliers in
the results, as the extremes of most parameter estimates
are not within a range that is physically plausible. This
does not mean that the estimates are necessarily biased, as
most extremes are accompanied by large standard devia-
tions. For these cases, a confidence interval of 62r in-
cludes the value zero, but also a realistic value indicating
that the quality or quantity of the data are not sufficient to
determine the value of that parameter.

The only estimate in Table 2 that does seem biased is
the minimum value for the evaporation factor f, which is
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Figure 3. Estimated impulse and step response functions of
observation well 46DP0032 for the level of the river Meuse
(measured at dam Sambeek-Boven).

Figure 4. Spatial distribution of the percentage of variance accounted for ðR2
adjÞ, in plan view (left figure). Low values for R2

adj
are found near the 15 pumping well screens that are clustered in two rows (red dots in right figure).
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very low (upper 95% limit is 0.4). In this case, however,
the zeroth moment of the evaporation M0,e which is
defined as follows:

M0;e ¼
ZN
0

fhpðtÞdt ¼ fA ð17Þ

does have a large confidence interval (6941), as the
influence of precipitation itself (A) cannot be determined
from the data accurately (the probable cause is that the
period in which data are available for this particular series
spans only 16 months, with one observation per month).

To determine the reason for the lower R2
adj of some

models, its spatial distribution is plotted (Figure 4). From
the figure, it is clear that the model fits are lowest in the
immediate vicinity of the pumping wells. This suggests
that the influence of the individual wells is not modeled
correctly, which is indeed the case, as the withdrawal rate
of the total wellfield is incorporated in the model, not the
rates of the individual wells. The individual model fits
(Figure 6) give the same indication. Near the wellfield,
the head fluctuates wildly when the individual pumping
wells are shut on and off. The predictions, however, fol-
low only the general drawdown pattern. At some distance,
the predictions fit the head fluctuations much better.

The model fit is also lower in some of the shallower
wells. The head series in those cases show distinct signs
of (threshold) nonlinearity (e.g., Knotters and De Gooijer
1999). The PIRFICT method can currently handle thresh-
old nonlinearity for precipitation and evaporation, but not
yet for other stresses, so this was not considered further at
this time.

Next, we focus on the estimated influence of the
wellfield, which was an important objective for doing
the time series analysis of this site. Using Equation 9,
we find that the zeroth moment of a well is given by
(Hantush 1956):

M0;w ¼
ZN
0

hwðtÞdt ¼ 2 2cK0ð2aÞ ð18Þ

in which K0 is the modified Bessel function of the second
kind and zeroth order (Abramowitz and Stegun 1964).
First, we remove all wells with estimates of M0,w with
large confidence intervals, as they are of little value and
only blur our view on the other results; we choose a cut-
off value of 8 3 105. The 34 series that were disregarded
all lack the period from 1972 to 1976 in which the with-
drawal rate was increased significantly. In Figure 7, the
spatial distribution of the 105 remaining M0,w estimates
and their confidence interval is plotted in two cross sec-
tions, one parallel and one perpendicular to the series of
pumping wells. As expected, the M0,w estimates are high-
est near the pumping wells; the left row of wells, which
have deeper screens, causes stronger drawdowns than the
right row. In the perpendicular cross section, the pattern
of M0,w approximates the shape of a drawdown cone. The
M0,w estimates at shallow well screens are clearly lower
than at deeper well screens; this may be caused by a resis-
tance layer or by recharge from ditches or creeks. This is
in line with the head series of these observation wells (not
shown here), where head differences between higher and
lower screens range up to 4 m. Although the model fit is
low in the vicinity of the pumping well screens (within
a radius of about 200 to 300 m), all in all, the M0,w esti-
mates seem nevertheless reasonable. The estimates of
other parameters near the wells, however, are clearly
biased. In Figure 8, cross sections are shown of R2

adj and
M0,e for the observation wells in the vicinity of the pump-
ing wells. The low values of R2

adj near the pumping well
screens correlate with the low values of M0,e. As it is not
logical for the influence of evapotranspiration to be
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Figure 5. Ground water withdrawal history at location Har-
lingerland. The flow rate is obtained by summing the rates
of the individual pumping wells.

Table 2
Range of Model Results and Parameter Estimates for All 139 Ground Water Head Series

Parameter Minimum (62r) Median Maximum (62r)

R2
adj 38.1 85.9 97.5

M0,p 59 (61.33 103) 864 6580 (63.53 105)
M0,e 172 (6122) 790 7976 (65913)
M0,w 1.933 1028 (64.13 1025) 4.503 1025 1.253 1022 (60.20)
f 0.09 (60.31) 1.20 4.29 (687)
d 23.21 1.26 7.01
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heterogeneous in deeper soil layers, this indicates that the
influence of evapotranspiration is overestimated and
partly correlates with the effect of the individual pumping
wells.

Discussion and Conclusions
In this paper, the PIRFICT model for time series

analysis was extended to handle multiple inputs. For
stresses other than areal recharge, analytical solutions of
simple hydrogeological schematizations were used as
a guide to develop appropriate impulse response func-
tions. Different stresses are not necessarily connected in
parallel in the model, as is the standard procedure in
ARMA models. A case with a single observation well
was used to illustrate how the model can effectively
decompose head series into partial series that each show
the effect of an individual stress. In the example with
multiple observation wells, it was shown that, next to its

a priori use in defining the impulse response functions,
physical knowledge is also valuable in checking the con-
sistency and plausibility of the model results a posteriori.
The parameter values should fall within a range that is
physically plausible. The spatiotemporal patterns ob-
served in the variables supply important and independent
feedback on the results, as there is no spatial dependency
imposed on the models. By focusing on the model resid-
uals, missing stresses, processes, or other sources of error
may be readily identified. High error levels are a possible
source of bias in the estimates, as other stresses may
partly compensate missing stresses when their influence
is correlated. In this case, the main source of error was
the fact that the behavior of the individual pumping wells
was not accounted for. In spite of this, the overall draw-
down pattern of the wellfield in total, which is often
the factor of interest, was represented well. The spatial
distribution showed that the estimates for the evapora-
tion series were clearly biased. Such a problem may be
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Figure 6. Head observations and predictions of wells F2320151 (near the pumping station) and B2311630 (at some distance),
giving an indication of good and bad model fits.

Figure 7. Estimated gains (dots) for the wellfield in the different observation wells presented in west-east (left) and north-
south (right) cross sections. The error bars indicate the 95% confidence interval of the estimates.
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corrected by incorporating data on the missing factors in
the model (in this case, the pumping at individual wells).
If such data are not available (as in this case), the bias
can be reduced by constraining the optimization problem
to a realistic range based on the values and patterns in the
surrounding observation wells. Future research will
include methods to impose a spatial coherence a priori in
the model, so that the individual dynamics of a high num-
ber of pumping wells can be incorporated in the model
and the results of neighboring observation wells are
linked and remain plausible.

The presented time series model may be applied to
decompose series of head fluctuations into partial series,
representing the influence of individual stresses. This en-
ables the evaluation of individual effects of a stress, such
as hydrological interventions, pumping wells, climatic
changes, and surface water levels. Furthermore, the pre-
sented model may be used for forecasting, gap filling,
scenario studies, trend analyses, and optimization and
control of hydrogeological systems (using more or less
standard time series analysis methods; e.g., Hipel and
McLeod [1994]). The PIRFICT approach is particularly
suited for the batch processing of many series, it uses
a small number of parameters, and it is not limited by
irregular or high-frequency data. Although here we spe-
cifically focus on ground water heads, the approach pre-
sented can also be applied to (contaminant) transport
problems or for that matter to hydrological problems in
general. In the field of transport, the Pearson III function
has proven to be well usable also (it matches the convec-
tion-dispersion equation [e.g., Jury and Roth 1990; Maas
1994]), whereas in other fields, care has to be taken to
select appropriate impulse response functions and meth-
ods for the processes and stresses occurring there.

An attractive feature of time series models is that
they are based on relatively few assumptions and the fits
are generally high; the model lets the data more or less
speak for itself. As such, time series models are a valuable
tool for preprocessing ground water level series before
calibrating a ground water model. Using time series mod-
els, missing stresses or series that are influenced by

hydrological interventions may be readily identified.
Also, series may be identified that are not suitable for
model calibration, for example, because they represent
a hydrological feature that is not incorporated in the
model, such as perched water tables. One step further,
transient ground water models may be calibrated directly
on the moments of the impulse response functions esti-
mated with time series analysis (Van de Vliet and
Boekelman 1998; Von Asmuth and Maas 2001), which
requires the calibration of steady models only. Moments
of the impulse response functions can also be modeled
spatially with the analytic element method, creating a pos-
sibility for transient modeling with analytic elements
(Bakker et al. 2007).
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